

Version 1.6

Copyright © 2013 Annabooks, LLC., All Rights Reserved.
www.annabooks.com

07/31/13 1

Yocto Project™: Adding the meta-oracle-java Layer
By Sean D. Liming and John R. Malin
Annabooks

August 2013

Java and Linux
Java was designed to be a platform independent managed code engine where applications can be written
once and run on many platforms. Best of all it is free for use, which goes great with the royalty-free GNU
Linux. Adding Java support to a distribution is commonplace. For the Yocto Project, adding Java means
adding a layer to the build to include Java runtime support. A meta-oracle-java layer is available. The normal
Yocto Project recipe performs a fetch to upstream sources and downloads the package to be built into the
distribution. Automatically fetching the Java packages is a problem since the Java packages require a user
to click on an acceptance agreement before the package can be downloaded. The workaround is to
download the package and change the recipe to fetch the package locally. This paper discusses a step-by-
step solution to update and integrate meta-oracle-java into a Yocto Project build for an x86 processor. This
paper was tested with Yocto Project 1.3.x and 1.4.x.

Special thanks goes to the layer developer, Nitin A. Kamble of Intel, who was kind enough to provide
feedback.

Download and Set Up the meta-oracle-java Layer
As of this writing, the meta-oracle-java layer supports Java Standard Edition (SE) 1.7u25. You can see the
available layer in the Yocto Project Source Repositories - http://git.yoctoproject.org/

Figure 1 - Yocto Project Repository

If you click on meta-oracle-java, the meta-oracle-java branch appears. The summary has a readme file that
acknowledges the issues with the user having to manually click to accept an agreement.

http://git.yoctoproject.org/

Version 1.6

Copyright © 2013 Annabooks, LLC., All Rights Reserved.
www.annabooks.com

07/31/13 2

Figure 2 – meta-oracle-java branch

1. Make sure you have set up Yocto Project per the quick start guide.
2. Open a terminal window.
3. Change directory to the poky-danny-8.0.x folder (or poky-<release>-<ver>).
4. Run the following git command to download the layer:

$git clone git://git.yoctoproject.org/meta-oracle-java

The git command will download the meta-oracle-java layer into the folder with the rest of the layers. The
layer supports four different packages: Java SE JDK i586, Java SE JDK x86-64, Java SE JRE i586, Java
SE JRE x86-64. The seven files, whose relationship is diagramed in Figure 3, are the heart of the Java
layer. The recipe (.bb) files have dependences on the include (.inc) files. Each file has a specific roll to play.

oracle-jse.inc

oracle-jse-jdk.inc oracle-jse-jre.inc

oracle-jse-jdk-x86-64_1.7.0.bb oracle-jse-jdk-i586_1.7.0.bb oracle-jse-jre-i586_1.7.0.bb oracle-jse-jre-x86-64_1.7.0.bb

Figure 3 – Recipe Architecture

The oracle-jse.inc file is used by 4 recipe files to perform the actions of installing the package. The oracle-
jse.inc file includes the license file checksums and the do_install(), which performs the actual installation.
The do_install creates the java directory and copies the files to a version folder under the /user directory. It
then makes a symbolic link to the Java folder.

:
:
do_install () {

 install -d -m 0755 ${D}/usr/${JDK_JRE}${PV}_${PV_UPDATE}

 cp -a ${S}/${JDK_JRE}${PV}_${PV_UPDATE} ${D}/usr/

 ln -sf ${JDK_JRE}${PV}_${PV_UPDATE} ${D}/usr/java

}

:
:

Version 1.6

Copyright © 2013 Annabooks, LLC., All Rights Reserved.
www.annabooks.com

07/31/13 3

The various variables come from the different files.

{JDK_JRE} is set by oracle-jse-jdk.inc or oracle-jse-jre.inc.
{PV} comes from the recipe version, which is 1.7.0.
{PV_update} comes from one of the four recipe files to the value of the update being used.

The oracle-jse-jdk.inc and oracle-jse-jre.inc simply add the type of Java being installed: JRE or JDK. The
recipes (.bb) control the action to download the packages and set up the update version value. Since a fetch
will not work with a manual acceptance of the user agreement, the workaround is to download the packages
and put them into the local layer folders. Only download the package that you need.

5. Open an Internet browser.
6. Go to the download site: http://www.oracle.com/technetwork/java/javase/downloads/index.html
7. Locate the package you want to download. For this example, JSE JDK i586 will be used – jdk-

7u25-linux-i586.tar.gz.

Figure 4 - Java Downloads

8. You will need to click on the “Accept License Agreement” radio button before you can download the

file.
9. Once the agreement is accepted, click on the .tar.qz file to download.
10. Place the .tar.gz file in the folder with the rest of the recipes.
11. The next step is to modify the recipe file to look for the package in the local folder rather than in the

internet resources. We also need to change the update version and set the checksums. Open the
oracle-jse-jdk-i586_1.7.0.bb file (or the file related to your package).

12. If the release is later than u25 Change, the PV_UPDATE value to the current release.
13. Comment (#) out the SRC_URI line to prevent a fetch of the resource from the Internet.
14. Add a line to fetch the package from with the layer directory:

SRC_URI = "file://${THISDIR}/jdk-7u25-linux-i586.tar.gz"

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Version 1.6

Copyright © 2013 Annabooks, LLC., All Rights Reserved.
www.annabooks.com

07/31/13 4

15. If this is a different release than u25, the last step is to update the checksum values for the new zip

file. Open a terminal.
16. Change directory to the package.
17. Run md5sum and sha256sum to generate new values.

Figure 5 - Create New Checksum Values

18. Update the checksum values in the recipe (.bb) file.
19. Save the file.

Here is what the oracle-jse-jdk-i586_1.7.0.bb file should look like

require oracle-jse-jdk.inc

PR = "r0"

PV_UPDATE = "25"

#SRC_URI = "http://download.oracle.com/otn-pub/java/jdk/7u2-b13/jdk-7u2-

linux-i586.tar.gz"

SRC_URI = "file://${THISDIR}/jdk-7u25-linux-i586.tar.gz"

SRC_URI[md5sum] = "23176d0ebf9dedd21e3150b4bb0ee776"

SRC_URI[sha256sum] =

"dd89b20afa939992bb7fdc44837fa64f0a98d7ee1e5706fe8a2d9e2247ba6de7"

The license checksum in the oracle-jse.inc file will also need updating, but the only known method is to pick
up the error during the build.

Setting Up the Build
Now, we need to set up the build files (bblayers.conf and local.conf) to include the layer and the specific
package.

1. Open a terminal and change to the folder with the poky directory.
2. Create the project:

$source poky-<release>-<ver>/oe-init-build-env myproject

3. Edit the bblayers.conf file to include the path the meta-oracle-java layer. For example:

BBLAYERS ?= " \

 /home/sean/Yocto1.31/poky-danny-8.0.1/meta \

 /home/sean/Yocto1.31/poky-danny-8.0.1/meta-yocto \

 /home/sean/Yocto1.31/poky-danny-8.0.1/meta-yocto-bsp \

 /home/sean/Yocto1.31/poky-danny-8.0.1/meta-intel \

 /home/sean/Yocto1.31/poky-danny-8.0.1/meta-intel/meta-cedartrail \

 /home/sean/Yocto1.31/poky-danny-8.0.1/meta-oracle-java \

 "

4. Save and close the file.
5. Edit the local.conf file and add the following to the end of the file to include the JSE JDK i586

package:

LICENSE_FLAGS_WHITELIST += "oracle_java"

Version 1.6

Copyright © 2013 Annabooks, LLC., All Rights Reserved.
www.annabooks.com

07/31/13 5

IMAGE_INSTALL_append += " oracle-jse-jdk-i586"

6. Save and close the file.
7. Perform a build of an image:

$bitbake –k core-image-x11

 You might run into a license error as shown in Figure 6. The license error may come up only if you are

changing the java version of the recipe. The error also shows the solution by providing the correct
checksum, which you can copy from the terminal output.

Figure 6 - License Error

8. To fix the error, edit the oracle-jse.inc and update the COPYRIGHT;md5 checksum value with the

correct version (in this example the original md5 checksum was
f5f3c0856f2ca27413b55b6ca50c897e and should be corrected to
3a11238025bf13b87f04753183ffeb90).

9. Save and close the file.
10. Restart the build.

Final Configuration
Once the distribution has been deployed, the JDK should be installed under the /usr directory. There should
be two folders /usr/java and /usr/jdk1.7.0_25. The final configuration step is to create a link to the /usr/bin
directory so Java can be executed from anywhere:

1. Open a terminal if one is not open.
2. Enter the following command to install Java in the /usr/bin folder (this step is purposely completed

so that it will not clash with open Java recipes):

$update-alternatives -–install /usr/bin/java java /usr/java/bin/java 1

If you write Java applications in Eclipse, starting the application requires using the class name that contains
the main() functions as part of the run command. To locate the command line to run the application, first run
the application. Then go to the Debug perspective and right-click on the line that says “Terminate, exit

value…’ and select properties for the context menu. For example, Figure 7 shows the command line run

properties of an application called helloworld. The application was developed on a Windows host. The
helloworld application contains a class called HelloWorld that has the main() function.

Version 1.6

Copyright © 2013 Annabooks, LLC., All Rights Reserved.
www.annabooks.com

07/31/13 6

Figure 7 - Locate Command Line String

With some minor adjustments for Linux, the command line for running the task in the Linux image would be
as follows:

$java –Dfile.encoding=Cp1252 –cp /<my-class-path>/. helloworld.HelloWorld

GUI Application Shell
As a final note, a graphical java application can be launched as the shell interface to the user. Using the
core-image-x11 / Yocto Project 1.3.1 distribution as an example, the steps below will launch the application
on startup:

1. For this example, a java project called GUITest1 is developed in Eclipse. The project is placed in
the distribution folder: /usr/java-apps. To make scripts easier to access, the first step is to create a
script to hold the java command line to run the application:

#!/bin/sh

java –Dfile.encoding=Cp1252 –cp /usr/java-apps/GUITest1/bin/. guitest1.GUITest1

2. Make the script executable:

$ chmod +x guijava

3. To start the application as the shell, a script needs to be created for X. core-image-x11 has an x-

session-manager script that looks for a script called ‘session’ in a /etc/mini_x folder. If the script is
not found, a default terminal application is run. Create a folder /etc/mini_x.

4. Create a script called “session” in the folder /etc/mini_x:

#!/bin/sh

/usr/bin/guijava&

Exec matchbox-window-manager

5. Make the script executable:

$ chmod +x session

6. Reboot the machine and the graphical java application should launch on startup

Version 1.6

Copyright © 2013 Annabooks, LLC., All Rights Reserved.
www.annabooks.com

07/31/13 7

Summary
The meta-oracle-java layer provides a base structure to integrate Java into a distribution. As Java is
updated, the latest version can be integrated by making some changes to the recipe files and manually
downloading the java package ahead of time.

Feedback welcome: http://www.annabooks.com/Contact.html

http://www.annabooks.com/Contact.html

